
partner
network

Advanced

Consulting
Partner

Project Goals

The Client

Facilitating DevOps with Application
Modernization & Architecture Reboot

We have a client who won Gartner® Peer Insights™ Customers’ Choice for content marketing plat-
forms. Their platform helps bring brands and their customers closer through high-quality relevant 
content. Companies can also use the platform to produce and disseminate their own content to im-
prove new customer acquisition, build brand loyalty and sustain interest in what the company does, 
and how it does it. They also maintain a digital publication which offers interesting and original con-
tent for public consumption on topics related to content marketing. Our client also owns a market-
ing analytics software that helps marketers compute ROI and improve outcomes on 18 integrated 
digital and social channels.

Client’s IT infrastructure needed to be migrated and modernized. In addition, they were facing chal-
lenges in deploying, maintaining, and supporting its existing applications. The company needed to 
revamp its infrastructure to facilitate automation and DevOps for ongoing upgrades.

The Solution

AAIC engineers team worked with client’s technical leadership and the Product owner team to develop 
a modernized business solution which included the following steps: The application was container-
ized—i.e. a form of virtualization wherein the application is run in isolated spaces called containers. 
Containers share OS (unlikeVirtual Machines). Everything the application needs to run, i.e. libraries, 
configuration files, etc., is encapsulated in its container. As a result, the containerized app can run on 
different types of infrastructure, from bare metal to VMs without any need to refactor it to the particu-
lar environment.



Client’s application was packaged and bundled as a Docker image before being deployed in 
Kubernetes (aka, K8s) clusters. This will enable better management, such as rollouts/rollbacks, 
service discovery, load balancing, storage orchestration, and self-healing 
(This refers to automatically replacing and restarting containers that fail) and rescheduling con-
tainers when nodes die.

Automation and version control are at the heart of all DevOps practices, and to enable this we ad-
opted GitHub as our repository for code and configuration files. These files are also used to 
implement CI/CD. GitHub Actions would be used to generate Java (JAR) files, which will be pack-
aged as Docker images along with dependent libraries and set up for automated deployment to 
AWS Auto Scaling Groups on the client’s cloud.(WAR/JAR files are digitally signed to signify the 
origin of source code, making it easy to developers to identify version, test, and deploy the 
web application).

To save time that would otherwise be spent in resource management, we templatized setting up of 
resources using AWS CloudFormation an Infrastructure as Code service that takes care of 
provisioning and configuring esources, so you don’t have to individually do it each time. 
CloudForma tion eliminates manual errors, speeds up, and simplifies application development, 
scaling, and application integration.

As part of the testing protocol, we implemented Selenium, an open source testing tool to 
synchronize and orchestrate tests as per pre-set triggers, which were defined in the CI/CD delivery 
pipeline.

To ensure security was given its just due, we implemented OWASP, an open-source security testing 
tool. OWASP helps identify diverse vulnerabilities before fresh releases went into production. 
Monitoring and security go hand in hand, and to enable thorough security, we enabled automated 
alerts by setting up GitLab with Slack. This would automatically share the status of CI/CD deploy-
ments and monitor for failures, reducing the impact on the business. CloudWatch metrics and logs 
were also used to monitor the system.

From a cost-optimization perspective Lambda functions were written to scale the environment up 
and down

Dashboard was set up for operations and monitoring.



 Standard 3 Tier architecture was used to save information on clients securely in the Cloud. Clients 
can log in with appropriate IAM security, Plus Group Rules and Security.

Within AWS architecture, we utilized Amazon’s Elastic Load Balancers combined with Auto Scaling 
Groups to balance the traffic across multiple instances and automate the creation/termination of 
instances across multiple Availability Zones. A number of components were also split out from the 
current infrastructure to make it more modular and fault-tolerant, while assuring redundancy across 
several geographic locations.

Architecture



The Data Layer - AWS Relational Database Service (RDS) was used for the data layer in conjunc-
tion with AWS Aurora, a MySQL-compatible Relational Database Management Service which was de-
signed from the ground up to run on AWS.

Deployment - Application Instance creation, launch, and updating is managed using AMI 
(AmazonMachine Image.) In order to update AMI i.e., modifying WAR/JAR files present in the AMI, 
AMI bakery is used. It also provides support for deploying it into the respective auto-scaling group. 
AMI deployment is done in a blue-green fashion where a new instance will be launched and only after 
launch will the older or previous instance will be terminated. AWS Lambda function has been set up in 
the environment. The Lambda function is responsible for scaling up or scaling down autoscaling 
groups. It can be scheduled to scale up or scale down at a specific rate.

Application Modernization: Steps & Benefits

Git VCS was used to manage the versioning of the infrastructure. a Git repository, with all of the rele-
vant setup & configuration scripts, along with any relevant documentation, provides detailed informa-
tion on how to recreate the infrastructure from scratch. This, combined with CloudFormation, enables 
the automated creation of almost all architected AWS services.

Version Control

Amazon Simple Storage Service (Amazon S3)- S3 is an object storage service. To store the images formatted by the 
openross application (a fast,open, and dynamic open source image resizer) S3 buckets were used.

Amazon Elastic File System (EFS) - EFS is a regional service that stores data across multiple Availability 
Zones ensuring high availability and durability. 

Amazon CloudWatch Log Group - Amazon CloudWatch Logs were used to monitor, store, and access application logs. 

AWS Application Load Balancer - ALB was used for distributing incoming application traffic across multiple targets, 
such as EC2 instances, in multiple Availability Zones.

AWS Route53 Hosted Zones - Route 53, highly available and scalable DNS web service, was used for routing internet 
traffic to client’s applications.

AWS Secrets Manager - All of client's application secrets or properties are stored in AWS Secrets Manager.

AWS Key Management Service - an AWS managed service was used to create, encrypt, and control master keys used 
to encrypt data.

Amazon Elasticache (Redis) - Amazon ElastiCache is a Redis-compatible in-memory data store service. It was used for 
session management in a client's web application. 

AWS Certificate Manager - It is a service that lets you easily provision, manage, and deploy public and private 
SecureSockets Layer/Transport Layer Security (SSL/TLS) certificates for use with AWS services and internal 
connected resources.

AWS System Manager Session Manager - Session Manager is a fully managed AWS Systems Manager capability that 
lets users manage their EC2 instances, on-premises instances, and virtual machines (VMs) through an interactive 
one-click browser-based shell or through the AWS CLI.

Amazon Identity and Access Management – It was implemented to manage access to AWS services and resources 
securely.

Tech Stack



Cost Optimization

With the deployment and output of AWS Migration Evaluator, our client was able to see 
detailed reports of their inventory.

Utilization of resources was analyzed, and this helped in right-sizing the company’s AWS 
solutions. Some of their existing resources were over-provisioned and right-sizing their 
resources resulted in significant cost savings.

Approx 30-35% reduction in the cost by selecting appropriate instances and deleting 
unused resources in AWS. Earlier the pods requested cpu and memory was higher which 
was resulting in high configuration spot instances, optimized solution given by AAIC 
resulted in this cost reduction.

Migration Benefits
Significant improvement in Uptime, which can be monitored with 3rd party tools and confirmed. 
Implementation of the new pipeline helps to reduce the time of the deployment from 11 mins to 5 
mins.
 
No single point of failure

Ability to innovate - Being on AWS opens up an array of new services and technologies, from new stor-
age engines like Redshift or services like Amazon Machine Learning or Lambda, earlier implementa-
tion was taking hours to send notification during data processing & involved manual efforts to reboot 
k8s pods. AAIC automated this manual task using a lambda service which reduced the resolution time 
to 15 mins.

Integration to other systems like Wordpress and third party APIs are simple with this devops solution. 


